Aminophosphaethyne (PCNH₂) and Its Isomers

Ludmila Ermolaeva* and Alexey Ionkin

Arbuzov Institute of Organic and Physical Chemistry, Academy of Sciences of USSR, Arbuzov str. 8 420083 Kazan, USSR

Received 25 July 1991.

ABSTRACT

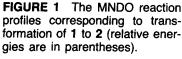
The potential energy hypersurface of the conversion of aminophosphaethyne (1) to 1-aza-3-phosphaallene (2) has been studied with the MNDO method. The interconversion includes five intermediate species. The structure and energy of 1 and its isomers produced by a hydrogen shift have been calculated also with ab initio molecular orbital theory by a split valence basis set including a polarization function at the P atom. The results reveal that all the isomers are equilibrium structures. The ab initio calculation predicts the carbenaazaphosphirane 3 to be the intermediate lowest in energy. It is suggested that a carbene (3), phosphinidene (4) or azaphosphirene (5) are responsible for the 1-aza-2,4-diphosphole formation.

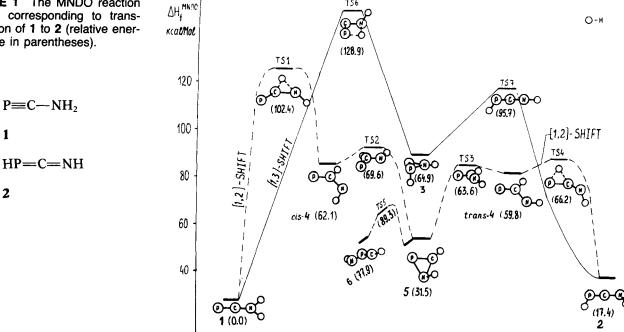
INTRODUCTION

One coordinated phosphorus compounds with a $P \equiv C$ triple bond have been of great interest during the past few years [1]. The most natural types of reactivity of the $P \equiv C$ triple bond are the cycloaddition reactions and the subsequent evolution of the primary and intermediate adducts. In particular, the mechanism of such reactions, especially with C-aminophosphaalkynes [2], has not been widely studied. The latter is a good model for the investigation of [3+2] cycloaddition and intermolecular rearrangements. It has been found that

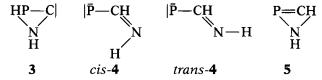
C-aminophosphaalkynes dimerize to novel organophosphorus compounds [3-4]:

$$P \equiv C - N \xrightarrow{R^2} \xrightarrow{A} \xrightarrow{R^2} C \xrightarrow{N \atop R^1} \xrightarrow{R^1}$$


$$\begin{split} R^1 &= \text{t-Bu} & R^2 &= H \\ R^1 &= \text{i-Bu} & R^2 &= \text{SiMe}_3 \\ R^1 &= \text{cyc. Hexyl} & R^2 &= \text{SiMe}_3 \end{split}$$


To explain this, the authors assumed that the formation of 1-aza-2,4-diphosphole involves a [1,2]hydrogen shift in the C-aminophosphaethyne followed by its cyclization to intermediate species. To elucidate the details of the above process R¹ and R² were replaced with hydrogen atoms and the relative stabilities of the possible PCNH₂ isomers were calculated by the MNDO [5] and *ab initio* methods.

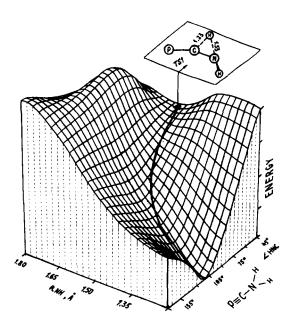
RESULTS AND DISCUSSION

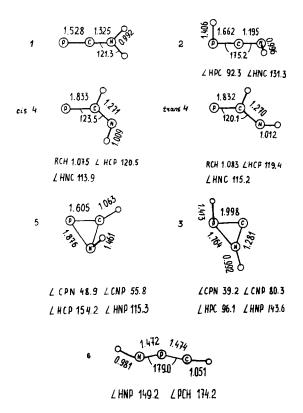

First, we have studied with the MNDO method the two-parameter hypersurfaces for the isomerization of $P \equiv C - NH_2$ (1) to HP = C = NH (2). The energy profiles for possible rearrangements of 1 and a section of the two-parameter MNDO hypersurface are given in Figures 1 and 2. According to these data, 1 may transform to 2 via a [1,3]-H shift or through two subsequent [1,2]-H shifts. The [1,3]-migration of a hydrogen from the nitrogen atom to the phosphorus proceeds through the carbene 3.

^{*}To whom correspondence should be addressed.

The [1,2]-H shift in 1 leads to the intermediate cis-phosphinidene 4.

The latter may convert to 2 in a subsequent [1,2]-H




FIGURE 2 Section of the two-parameter MNDO hypersurface for the [1,2] hydrogen shift in $P \equiv C - NH_2$. The reaction profile (⇒) via the transition states TS1 is represented.

shift [6], but the cyclization of 2 to azaphosphirene (5) is more kinetically preferable. An opening of 5 results in the formation of cis/trans-4 or the carbene HN=P-C-H (6). Thus, there are electron-deficient intermediates (3, 4, 6) which are the precursors of 2.

In the second step, we have investigated the structures of possible isomers (1-6) with ab initio molecular quantum mechanical methods. The standard split valence basis set 3-21G [7] and 4-31G [8] with additional P diffuse functions was chosen. The d polarization exponent $\alpha_d(P)$ was 0.55. The Hartree-Fock optimized geometries were used to compute the force constant matrices by finite difference of the analytical first derivatives at the 3-21G (d(P)) level. All structures are equilibrium structures. The ab initio molecular orbital calculations were performed with the MICROMOL program constructed by the Cambridge group [9].

The theoretical geometries of the isomers 1-6 by ab initio treatment are shown in Figure 3. The total and relative energies are given in Table 1. The structure with the P=C triple bond has been predicted theoretically to be the most stable. The 1aza-3-phosphallene 2 lies 11.3 and 11.8 kcal/mol higher than 1 at the 3-21G (d(P)) and 4-31G (d(P))levels, respectively. The former have been studied at the ab initio level by S. Nagase et al. [10]. Further discussion is carried out on the assumption that the topology of the potential energy surface does not depend on the method of calculation. Compound 2 can convert to 3 and the latter to 1.

The carbene structure 3 is less stable than 2 by 38.1 kcal/mol at both of the ab initio levels. A ring opening followed by the migration of a hydrogen

FIGURE 3 Geometries for the various isomers of aminiphosphaethyne at the 4-31G (d(P)) level. All bonds are in Å.

from phosphorus atom to nitrogen leads to the aminophosphaethyne 1 A[1,2]-hydrogen shift in 1 or 2 results in the phosphinidene structure 4.

The cis-isomer is lower in energy than trans-4 at the 4-31G (d(P)) level; at the 3-21G (d(P)) level, the result is vice versa. This is due to a different symmetry of the frontier orbitals localized at the phosphorus atom. According to the 4-31G (d(P)) data, the highest occupied molecular orbital (HOMO) in 4 possesses σ -symmetry, and the lowest unoccupied molecular orbital (LUMO) has π -symmetry. Thus, phosphorus and nitrogen lone pairs are located in the same plane, and the higher relative energy of the trans form may be attributed to the larger four-electron repulsion between the two lone pairs. The calculation at the 3-21G (d(P))

TABLE 1 Total Energies (hartrees) and Relative Energies (kcal / mol)

Species	RHF / 3-21G (d(P)		RHF / 4-31G d(P)	
1 (D _{2h})	-432.01136	(0.0)	-433.65826	(0.0)
2 (C ₁) 3 (C ₁)	-431.9933 -431.93260	(11.3) (49.4)	- 433.63950 - 433.57878	(11.8) (49.9)
4 cis (C _s) 4 trans (C _s)	- 431.91318 - 431.91485	(60.9) (60.6)	-433.56286 -433.55789	(59.8) (63.0)
5 (C₁)	-431.91465 -431.92148	(56.4)	- 433.55769 - 433.57073	(54.9)
6 (C ₁)	-431.88206	(81.1)	− 433.53781	(75.6)

level shows that the phosphorus lone pair in 4 lies in the π -plane, and the destabilizing interaction is absent due to the different symmetry of the lone pairs.

The phosphinidene 4 undergoes a cyclization to a more stable product 5 with a small endothermic effect ($\Delta E = -8.1$ (trans 4) and -4.9 kcal/mol (cis 4), 4-31G (d(P)). The azaphosphirene may form a carbene 6 through a N-C bond cleavage. The isomer 6 has the highest relative energy (Table 1). The structures that are analogous to **4–6** have been suggested previously to explain the respective product formation [11-13]. The MNDO relative energetic positions of isomers 1-6 qualitatively agree with ab initio data, the exceptions being the cyclic species 3 and 5. The intermediate resulting from [1,3] hydrogen shift in aminophosphaethyne is more stable than the ones from [1,2]-hydrogen shift (Table 1). Nevertheless, taking into account steric and electronic influence of the substituent on the relative energies of the isomers, we assumed that 1aza-2,4-diphospholes may be formed by reaction of 1 with 3-5:

path 1:
$$\mathbf{1} + \mathbf{4}$$

path 2: $\mathbf{1} + \mathbf{5} \longrightarrow \begin{array}{c} P \longrightarrow NH_2 \\ N \longrightarrow P \\ H \end{array}$

path 3: $\mathbf{1} + \mathbf{3}$

The first way represents a [3+2] cycloaddition, as previously suggested [2]. The second path is a [2+2] cycloaddition reaction with a subsequent endocyclic P-C cleavage. And the latter includes interaction of 1 with the carbene structure 3 followed by P-C cleavage and a migration of hydrogen. It is difficult to choose the way without supplementary experimental and theoretical study.

ACKNOWLEDGMENTS

We are grateful to Academician B. Arbuzov for his valuable comments and suggestions.

REFERENCES

- [1] M. Regitz, Chem. Rev., 90 (1990), 191. M. Regitz in Multiple Bonds and Low Coordination in Phosphorus Chemistry (M. Regitz, O. J. Scherer eds.), Thieme, Stuttgart, 1990, p. 58.
- [2] R. Appel, M. Poppe, Angew. Chem. 101, 1989, 70; Angew. Chem. Int. Ed. Engl. 18, 1989, 53.
- [3] A. S. Ionkin, S. N. Ignat'eva, I. A. Litvinov, V. A.

- Naumov, B. A. Arbuzov, Heteroatom Chem., 2, 1991,
- [4] Heating of aminophosphaethyne ($R_1 = \text{cy-Hex}, R_2$ = SiMe₃) leads to the corresponding 1-aza-2,4-diphosphole (b.p. = 121° C/ 10^{-3} , δ^{31} P = 93.6; 210.8). Unpublished results.
- [5] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc., 107, 1985, 3902; M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, AMPAC (IBM), version 3.0, QCPE No. 527 (1987).
- [6] The activation barrier is 4.3 kcal/mol for the [1,2] shift of hydrogen to phosphorus atom in cis-phosphinidene. An activation barrier for cyclization of cis 4 is 1.5 kcal/mol.

- [7] M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, W. J. Hehre, J. Amer. Chem. Soc., 104, 1982, 2797.
- [8] W. J. Hehre, W. A. Lathan, J. Chem. Phys., 56, 1972,
- [9] S. M. Cowell, The Cambridge Hartree-Fock Program. 1987.
- [10] M. Yoshifuji, T. Niitsu, K. Toyota, N. Inamoto, K. Hirotsu, Y. Odagaki, T. Higuchi, S. Nagase, Polyhedron, 7, 1988, 2213.
- [11] W. Rösch, T. Facklam, M. Regitz, Tetrahedron, 43, 1987, 3247.
- [12] M. Hermesdorf, M. Birkel, H. Heydt, M. Regitz, Phosphorus, Sulfur, and Silicon, 46, 1989, 3.
- [13] H. Bock, Phosphorus, Sulfur, and Silicon, 49 / 50, 1990, 3.